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ABSTRACT 

An analytical treatment is presented for the nonlinear differential 
equation governing the one-dimensional steady- state temperature dis- 
tribution along a rod or  a fin due t o  the heat exchange between them and 
the surroundings by both convection and radiation. The analysis t rea ts  
the problem in general and includs variation in geometry, dependence 
of properties on temperature,  and internal heat generation. 

It was shown that the special case of constant a r e a  geometry could 
be solved exactly including temperature dependent physical properties 
and with heat generation that a t  most is temperature dependent only. 
The solution, however, has to be determined for each case separately 
depending on the functions describing the dependence of the physical 
properties and the heat generation on temperature. 

The solution for the constant area geometry with constant thermal 
properties leads to the definition of two functions in te rms  of integrals. 
The integrals can be evaluated numerically to any desired accuracy and 
the functions will be tabulated and published under separate cover. 

For the general case of arbitrary geometry and with physical pro- 
perties and heat generation that i s  locatioh dependent a s  well a s  tempera- 
tu re  dependent, a new method for solving the problem numerically is 
outlined. 
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DEFINITION O F  SYMBOLS 

Symbol 

A 

C 

C'  

D 

E 

f 

g 

h 

k 

L 

P 

Q 

q'" 

r 

S 

T 

V 

X 

CY 

6 

e 
x 
A 

@ 

Definition 

Area,  f t 2  

Constant 

Constant 

Diameter, f t  

Emis  sivity factor, dimensionless 

Function 

Constant 

Convection heat transfer coefficient, Btu/hr f t 2  OR 

Thermal conductivity, Btu/hr f t  OR 

Length, f t  

Per imeter  , f t  

Rate of heat t ransfer ,  Btu/hr 

Internal heat generation, Btu/hr f t 3  

5h Constant , 
2 c r ~ ~ 0 3  

Length along surface, f t  

Temperature,  OR 

Volume, f t 3  

Distance, f t  

Constant 

Half thickness of rectangular fin, f t  

Dimensionless variable, T/To 

1 / e  
Function 

Function 

iv 



Symb ol 

L 

0 

i 

S 

sr 

sc 

DEFINITION O F  SYMBOLS (Concluded) 

Subs c r  ipt s 

Definition 

Condition at a distance L f rom origin 

Condition at origin 

Condition at origin for infinite fin 

Condition of surroundings 

Condition of surroundings due to radiation 

Condition of surroundings due to convection 

. 

V 



NONLINEAR HEAT TRANSFER AND TEMPERATURE DISTRIBUTION 
THROUGH FINS AND ELECTRIC FILAMENTS O F  ARBITRARY 

GEOMETRY WITH TEMPERATURE- DEPENDENT PROPERTIES 
AND HEAT GENERATION 

A.  R .  Shouman* 
George C .  Marshall Space Fl ight  Center 

Huntsville, Alabama 

SUMMARY 

A theoretical analysis was conducted of one-dimensional, steady- 
state, heat exchange by both convection and radiation between a rod or  
a fin and their surroundings. 
where the heat is  being dissipated o r  received by the fin o r  rod. Both 
the infinite and finite length cases  a r e  considered. 
equivalent temperature for radiation could be different f rom that for 
convection. The fin or  rod could have an  a rb i t r a ry  geometry and its 
physical properties could be temperature dependent as well a s  displace- 
ment dependent. 
tion o r  absorption. 

The analysis considers both the cases  

The surroundings 

The analysis a l s o  considers the effect of heat genera- 

The exact solution of the problem for a constant area fin o r  rod 
with constant thermal properties is  presented. 
two functions of parametr ic  nature. 
dependent on the boundary conditions. A computer program for evaluat- 
ing the functions was written by James W .  Price of the Applied Research 
Branch. 
problems. 
to whom a computer is not readily available, the two functions will be 

The solution produces 
The different parameters  are 

The program (Appendix A) can be used directly for solving fin 
However, to make this study complete and of use for those 

* Professor  of Mechanical Engineering, New Mexico State University, 
Las Cruces,  New Mexico. Senior Postdoctoral Resident Research 
Associate of the National Research Council, National Academy of 
Sciences and National Academy of Engineering at the NASA/George C.  
Mar shall Space Flight Center , Huntsville, Alabama in the Propulsion 
and Vehicle Engineering Laboratory. 



presented in tabulated and graphic forms  with examples in a later report .  

It was shown that the heat generation or  absorption cases  are  
reducible to  the simple case through a suitable transformation. 
this transformation, the tabulated functions can be used for solving 
problems with internal heat generation absorption. 

After 

The constant a r ea  problem with temperature-dependent properties 
is  also solved exactly. The solution, however, is dependent on the 
functions describing the dependence of the physical properties of tempera- 
ture .  The solution i s  presented in the form of integrals that can be 
evaluated for  any case under consideration. 

The problem in general was examined, and the conditions under 
which it could be solved exactly were outlined together with the method 
of solution. A procedure for numerically solving the problem when 
exact solutions a re  not possible was outlined. 
f rom the point-slope method generally used in the l i terature  for handling 
this problem by choosing the origin where the temperature gradient i s  
specified instead of the customary choice of the origin at the point where 
the temperature i s  specified. 

The procedure differs 

INTRODUCTION 

The subject of heat transfer f rom fins and extended surfaces has  
been studied analytically and experimentally for almost two centuries [ 11 . 
Most work has been concentrated on convection fins with constant thermal  
properties.  The work on convection fins was culminated and summarized 
by Gardner [ 21 . The problem of a fin dissipating heat to the surround- 
ings by radiation has recently come under extensive study because of the 
interest  in space and space travel.  

Numerical solutions of the radiating fin problem using difference 
equations and computers a r e  given in the l i terature  by Chambers and 
Somers  [ 31 , Lieblein [ 41 , Bartas and Sel lers  [ 51 and Callinan and 
Berggren [ 61 . 
minimum mass fin. 
approximations to be used in connection with a digital computer. 
Shouman [ 101 presented an exact solution for the problem. 
and Kramer [ 111 considered the effects .of linearly varying conductivity 

Wilkins [ 71 and Liu [ 81 treated the problem of the 
Mackay [ 91 outlined a method of successive 

Stockman 

2 



. 

and emissivity for the heat transfer of radiation fins using the Runge- 
Kutta method. Since convection heat transfer sometimes accounts for 
a significant portion of the heat exchange, it i s  necessary to examine 
the problem when both convection and radiation a r e  present.  
examined the constant a rea  fin with temperature dependent properties 
and combined convection and radiation. His solution was obtained in 
t e r m s  of Jacobian elliptic functions with the aid of the Gregory-Newton 
Forward Interpolation formula. 
solution for the constant a rea  case with constant thermal properties and 
with combined convection and radiation heat t ransfer .  Hung and Appl [ 141 
presented a mathematical iteration technique for handling the general fin 
problem and considered the effect of variation of thermal properties with 
temperature and the question of heat generation. 
an exact solution for the constant a rea  fin with temperature dependent 
properties and temperature dependent heat generation with combined con- 
vection and radiation heat t ransfer .  

Cobble [ 121 

Shouman [ 131 presented an exact 

Shouman [ 151 presented 

The distribution of temperature along a thin rod or a thin-walled 
tube heated by passing a heavy electric current  through i t  has also been 
of interest ,  both experimentally and theoretically, for a long t ime.  The 
work on this problem has been concentrated on the case where the rod 
or  tube was maintained in a vacuum, namely, when the heat dissipated' 
from the surface by radiation only. The l i terature on this problem con- 
tains work by Langmuir [ 161, Langmuir and Taylor [ 171, Worthing [ 18- 
201, Worthing and Holliday [ 211, Stead [ 221, Bush and Gould [ 231, 
Prescot t  and Hincke [ 241, Baerwald [ 251, Jain and Krishnan [ 26-3 11, 
and others .  
cal to those describing the problem of a fin receiving heat by radiation 
only f rom surroundings whose exact solution i s  presented by Shouman [321. 

The differential equation describing this problem i s  identi- 

The purpose of this study was to examine the differential equation 
describing the one- dimensional temperature distribution and heat trans- 
fer along fins o r  electrical filaments of variable cross-sectional a r ea  
and geometry, with temperature dependent properties and internal heat 
generation or absorption. The heat exchange with the surroundings can 
be by both radiation and convection. The heat exchange can be f r o m  the 
fin to the surroundings o r  vice versa .  
geometries were considered. The conditions required for exactly solv- 
ing the differ entia1 equation were also examined. 
solution was not pos sible, an analytical procedure was used that greatly 
simplified the solution of the problem using numerical  methods. 

Both the infinite and finite 

When the exact 
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In this report  the constant a rea  fin or filament problem with con- 
stant thermal properties i s  dealt with in detail.  It i s  shown that the 
problem can be solved exactly. The solution produces two functions 
with four parameters that can be tabulated, These two functions a r e  
presented in tabulated and graphical forms in another report  together 
with examples on how to use the tables and graphs to solve different 
problems. 
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MATHEMATICAL ANALYSIS 

The differential equation describing the one- dimensional steady- 
state temperature distribution and heat flow'under the three modes of 
heat transfer and with heat generation i s  well established. It may be 
written in the following form 

dS [oE(T,x) (T4 - Ts4)  - dx [A(x)k(T) g] t q"' (x, T) A(x) - P(x) dx d 
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c 

c 

- - 
TS 

h(T, x)  = 

distance along x axis.  

a r ea  of fin perpendicular to heat flow. 

thermal conductivity of fin material ,  which is  tempera- 
tur e dependent. 

local temperature of fin a t  x. 

ra te  of internal heat generation per unit volume at x, 
which is  dependent on both x and T. 

perimeter of the fin at x .  

element of length along the surface of the fin. 

Stefan - Boltzmann constant. 

emmissivity of the fin surface at x, which is also 
dependent on T. 

equivalent surrounding temperature.  

convection film coefficient at x, which is  a lso tempera- 
tur e dependent. 

Before we proceed with our analysis, a few comments about equa- 
dS tion ( 1 )  are in o rde r .  

ignored in the analysis of thin fins. However, % will be considered in this 
analysis.  
can be determined taking into account all incident radiation f rom the sur-  
roundings. 
radiation t e r m  can be different than that for the convection term. It will 
be shown that, through a simple transform, the equation can be reduced 
to the form where the equivalent surrounding temperatures for both 
radiation and convection a r e  the same. The equivalent surrounding 
temperatures for radiation and convection will be considered to be 
identical and later the necessary transformation will be introduced. 
equivalent surrounding temperature will be treated a s  an independent 
variable to facilitate the mathematical analysis. In reali ty,  however, the 
equivalent surrounding temperature due to the radiation field depends on 
many factors.  
temperature for some configurations a r e  considered, for example, in 
Reference 4. 

The difference between - and unity is customarily 

The equivalent surrounding temperature in the radiation t e r m  

In general, the equivalent surrounding temperature for the 

The 

The details of determining the equivalent surrounding 

Although the proportionality of the heat exchange by radiation to the 
fourth power of the temperature has been 'established on theoretical and 
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experimental bases for  black body radiation, there  have been questions 
raised about i t s  validity for metallic surfaces.  Using electromagnetic 

, theory, Aschkinass [ 3 11 concluded that for electrical  conductors, the 
exponent over the temperature should be 4 .5 .  Jacob [ 11, with slight 
modification of the constants used in the derivation, suggests an expon- 
ent of 5 . 0 .  Langmuir [ 161 reports  an exponent of 4 .96  for  tungsten 
between 400°K and 2400°K based on experimental evidence. Although 
the exponent used in this analysis i s  4, any other exponent can readily 
be used. It is hoped that with the solution of the equation for the tempera 
ture  distribution, it will be easy to determine the exponent experimental- 
ly and examine the validity of the different theories.  

To make clear the method of analysis for equation (1) that will be 
recommended la ter ,  the special case of the constant a r ea  fin will be 
considered fir s t .  

THE CONSTANT AREA FIN CASE 

Constant Thermal Properties Without Heat Generation 

If a constant a rea  fin i s  considered without any heat generation and 
with the thermal properties constant, equation (1) becomes: 

d 2 T  uEP  h P  
(T4 - Ts4)  - - kA (T - Ts)  = 0 s - k A  

Equation (2) can readily be integrated once giving: 

2aEP (T5- 5T:T) + %  (T2 - 2TsT) + C' - 5kA kA 

The solution of equation ( 3 )  is normally required, subject to the boundary 
conditions T = T, a t  x = 0 and - = 0 a t  x = L, because of symmetry or  
insulation. In general, however, the boundary condition a t  x = L can 

be given by - 
of heat exchange a t  x = L must  be applied to determine the function 
f (TL).  

dT 
dx 

= f (TL) where other considerations like the r a t e  (3, = L 

Before considering equation (3 )  the special case of the infinite 
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fin with zero equivalent surrounding temperature will be considered, 
since the solution can be readily obtained through integration. 

The Infinite F.in With Zero Equivalent Sink Temperature  

For this case Ts = 0, which reduces equation (3)  to: 

Equation (4) i s  

T = Ti  a t  

and 

a t  - -  - 0  dT 
dx 

T5 +E TZ t C' 

subject to the boundary conditions. 

x = o  

The second boundary condition requires that 

T = O  at x = a  

Applying this condition to equation (4) yields C' = 0, giving: 

- = - T ( -  2 u E P  T3 -I- E)+ dT 
dx 5kA kA 

The negative sign is used because T decreases  with increasing x. 
Equation (5) can 

r 

be directly integrated to give the final result: 

(Ep T,3 + 
5kA 

(=TI3 t 

(4) 

(5) 
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which can also be written as:  
r - 

In the absence of convection, both equation (6) and (7)  a r e  not very 
useful. Equation (5) reduces to 

-=-(=) dT 2 u E P  T Z  
dx 

which can be integrated directly to give: 

Equation (9) can also be written a s  

I' 1 

3 /2uEP 
''5 5kA 

The Finite Equivalent Surrounding Temperature 

. 

When the equivalent surrounding temperature  is finite, the zero  x 
axis shallbe chosen where the temperature gradient i s  specified instead of 
where the temperature is specified. The reason for this choice will be 
made clear a s  the analysis p rogres ses .  
be in the direction of increasing temperature  when the fin t ransfers  
heat to the surroundings and in the direction of decreasing temperature  
when the fin receives heat f rom the surrounding. Assuming the tempera- 
ture  at x = 0 to be To and substituting in equation (3), the following is 
obtained : 

The positive x axis will then 

8 
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I .  

2uEP h P  
5kA 

- (T: - 5T; To) - - kA ( T i  - ZT, To) (12) 
dT ... C' = (i;)x 

= o  

dT -- [T5 - T: - 5T,' (T  - To)] = 0 - 5kA 

t hP [ T2 - T i  - ZT, (T - To)] kA 

Introducing the variable 8 = T/To and r = 5h/2uETo3 gives 

1 t r (0  - 1) (e - 28, t 1) 

assuming = g  (ZuEP 5kA "), then 

The solution to equation (15) can be written as: 

e 
x = f 1 [(e5 - 1) - 5e; (e - 1) 

1 

9 



Substituting for C = g t 50: - 1 t r(28, - l),  equation (16) can be 
written a s  follows: 

e 

1 

The solution to equation (17) is subject to the boundary condition 

1 

where L i s  the length at which 8 = 8L = TL/T,. 
not To. Once the value of To required to satisfy equation (18) is obtained, 
the temperature a t  any point in the rod can be obtained from equation (17). 

Normally TL i s  known, 

The positive and negative signs in equations (15), (16), (17) and (18) 
correspond to the cases  of heat transfer to and from the surroundings. 
In general, the positive sign corresponds to the case where 8 increases  
in the increasing direction of x while the negative sign corresponds to ' 

the case where 8 decreases in the increasing direction of x .  
on the right hand side of equation (17) could not be evaluated in te rms  of 
the simple functions. 
very readily for g > 0 .  For g = 0, i t  can be seen from equation (16) that 
a singularity exists a t  8 = 1, which calls for special consideration for 
evaluation of the integral. We shall define the two functions Q and A a s  
follows : 

The integral 

It could be evaluated numerically or graphically 

1 

9 (e, e,, r ,  C )  = r le5 - 5es4 e t r (e2 - 2ese) t C 1 - I  de 

e 

for 8, 2 1.0 and 8 5 1.0 



If both @ and A a r e  proved to be finite in  the range of interest ,  the 
solution can be written for the fin transferring heat a s  

and for the fin receiving heat a s  

Evaluation of The Functions @ and A 

An examination of 9 and A shows that both functions have an upper 
bound which exists for r = 0, g = 0 and 8, = 1 and also that the functions 
a r e  finite in  the entire field except at the point 8 = 1 when O s  = 1 and 
g = 0 .  The case of O s  = 1 and g = 0 represents  an infinite fin with an 
insulated end and it shall be considered separately. 

The Function 3? 

Introducing the variable A = l / e ,  equation (19) can be written a s  
follows : 

1 
A 

@ ( A ,  Os, r ,  C)  = 2 /3  1 [ 1 - 5es4A4 t r A 3 ( l  - 28,A) + CA5]-’ d(A+) (23) 

Equation (23) can be used to evaluate @ when g > 0 .  The integral  can be 
evaluated to any desired accuracy using a suitable numerical scheme 
and utilizing A3 12 a s  the independent variable.  To remove the singularity 
at A = 1 when g = 0, the integral is f i rs t  integrated by par t s  leading to the 
following : 

0 

A 1 9 

[ 5 ( i  - eS4x4)  t 2 r i 3 ( 1  - eSx) l2  
1 - 5eS4A4 t r A 3 ( 1 -  28sA)+CA5]’(10+rA3)d(A2) 

@ ( A ,  os,  r ,  C) = 8 / 3  J’[ 
0 

3 1 

2 A 2  [ 1 - 5es4A4 + r A 3 ( 1  - 2 O S X )  t CA5 1’ 
q i  - eS4A4) t m 3 ( 1  - esx) 

- 
- 
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It can be seen f r o m  equation (24) that H is finite in the whole range of 
interest  except a t  h = 1, 8, = 1, and g = 0, which will be discussed 
l a t e r .  
be used for evaluating H using equation (24). 

A numerical scheme similar to that used with equation (23)  can 

The Function A 

When g > 0, Acan be calculated using equation (20 ) .  When g = 0, 
integration by par ts  removes the singularity a t  8 = 1 and produces the 
f ollo wing : 

It can be seen f rom (25) that A i s  finite in the entire range of interest  
except at 8 = 1 for the infinite insulated end fin where O s  = 1 and g = 0 .  

Both the functions @ and Awere  evaluated using a digital computer 
They will be pre-  for different values of the parameters  Os, r ,  and g .  

sented in  tabular and graphic forms  in a later report .  

The preceding analysis applies for all positive values of r .  The 
limiting value of r = a), reduces the problem to the well known linear 
convection problem. 

The Negative Values of r - It i s  possible for r to assume negative a s  
well a s  positive values. 
consideration that r has a minimum value. 
can be written as:  

However, it will appear f rom the following 
Equation (2)  for negative r 

d 2 T  uEP  h P  
d x 2  - kA (T4 - Ts4)  - - kA (T - Ts)  - -- 

There i s  a temperature Tm defined by 

12 



o r  

h 
u E  (Tm t Ts) (Tm2 t T s 2 )  = -  

Tm is the minimum or maximum temperature that can be reached in an 
infinite fin a t  the point where the temperature gradient i s  zero .  
Tm for To gives 

Using 

Therefore, 

5 
2 

r,in = - - (1 -t e,) (1 t e s 2 )  

However , it can be shown that A i s  imaginary for 

when g = 0 1 - 5 8 2  
zes - 1 

r <  

The Case of r = - 1 - The case of r = - 1 will be considered separately, 
since it can be integrated in te rms  of simple functions under certain 
conditions. For r = - 1 and (de/&), = 0 = 0,  equation (14) reduces to 

F o r  8, = 0 or  O s 3  = 0.4,  equation (31)  becomes 

Equation (32) can be integrated directly giving 

which can be written a s  



The Infinite Fin Case - F o r  the sake of completeness, the infinite fin 
case and g = 0 will be considered. 
case where 8, = 1 or To = Ts, and the solution becomes 

F o r  r positive, this represents  the 

for the fin dissipating heat and 

for the fin receiving heat. 

For  any initial condition TI  and Ts, T, can be evaluated for any 
change in length A x .  

For negative r ,  the infinite fin case i s  where r = rmin 
= - 5 /2  (1 t €3,) ( 1  t 8,') and To = Tm. 
equation (28)  and the solution becomes 

Tm can be calculated from 

for the fin dissipating heat and 

for the fin receiving heat. 

For any initial condition T, and Ts, T, can be evaluated for any 
change in length A x .  

Heat Transfer Calculations - With the solution of the equations, the 
calculations of the heat transfer,  the fin effectiveness and other 
quantities of interest  follow readily. 
of the minimum mass  fin will be considered. 

To i l lustrate this, the problem 

14 
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THE MINIMUM MASS F I N  

As an example of the use of the solution, consider a constant a r ea  
fin with constant base temperature, TL, that i s  required to transfer 
an amount of heat, Q. 
required to minimize the mass  of the fin. 

It i s  quite often desirable to obtain the conditions 
It can be readily shown that: 

1 
Q = - (2/5 uEkPA)’ TL* [ 1 - 5eS4XL4 t r X L 3  (1 - 2esXL) t CXL 5 ] f (39) 

This gives 

(40 1 5 Q2 A =  2uEkPTL5[1 - 5OS4XL4 t r X L 3  (1 - 2 O S X L )  t CXL5] 

and 

For  a rectangular fin of thickness 26, P = 2, and A = 26, it follows: 

(42) 5Q t i =  
8crEkTL5[ 1 - 5OS4XL4 t rXL3(1 - 28,hL) t CkL5]  

and 

By combining equations (42) and (43), the volume of the fin i s  obtained 
as 

15 



F o r  V to be minimum, the expression 

[ @ ( I ,  O s ,  r ,  C) - + ( A T . ,  O s ,  r ,  C)]  
A t [  1 - 50,4XL 4 t r X L 3  (1 - 2esXL) t CXL5It 

should b e  a minimum. 
following equation: 

Differentiating and equating to ze ro  gives the 

A 1 

XL2 [ 1 - 5 8 s 4 X ~ 4  t ~ X L ~  (1 - 20,X~,) t CXL~]' - -  2 
3 

- -  
[ 1 - 250s4X~4  t 2rXL3(2  - 5esXL) t 6CAL5] 

The solution to equation (45) gives the conditions required for a minimum 
mass rectangular f in .  

and P = TD, the follow- For  a circular fin of diameter D, A = - ITD2 
4 

i n g  expression is obtained. 

104 Q5 )f 
[+ (46) v = - (  16 IT 2 v 4 E 4 k T ~ "  XL [ 1 - 5 0 , " X ~ ~  t r X ~ ~ ( l - 2 0 ~ X ~ ) t C X ~ ~ ]  + 1 $(I ,  o s ,  r ,  C ) -  + ( X I , ,  o s ,  r ,  C)l  

Differentiating and equating to zero,  the condition for minimum V is 
found to be 

[ W L  o s ,  r ,  C) - W L ,  o s ,  r ,  C)]  (47) 

3 1 - 
- 11,' [ 1 - 5 0 s 4 X ~ 4  t r X ~ ~ ( 1  - 2 0 , h ~ )  t CXL~]' - -  

29 17 - -  3 - 145 0 s 4 X ~ 4  t r X ~ ~ ( 4 - -  B S X L )  t 7 CXL~ 
2 6  3 

The solution to equation (47) gives the requirements for minimum mass 
fin geometry. 
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Constant Thermal Propert ies  with Heat Generation or  Absorption 

The problem of heat transfer f rom a constant a r ea  rod or  tube with 
internal heat generation arises naturally in the case of the electric 
filament heated by the passage of an electric current. 
heat could be generated by a n  atomic or chemical reaction as in an 
atomic reactor o r  an exothermic chemical reaction. 
absorption occurs when an  endothermic chemical reaction or an evapora- 
tion process  takes place within the tube. 
transformation reduces this problem to the no-heat generation case 
considered ear l ier .  

Similarly, the 

The case of heat 

It will be shown that a simple 

Constant Heat Generation 

Assuming the heat generation t e r m  to be constant, equation (1) can 
be written as: 

h P  q " ' = O  d 2 T  (rEP 
3 - kA kA k (T4 - Ts4)  - - (T - Ts) i- (48) 

q"' is positive when the heat is generated and negative when the heat is  
absorbed. 
equation, 

The temperature,  Tm, can be defined by the following 

T m  i s  greater than Ts when q"' i s  positive and l e s s  than Ts when q"' 
i s  negative. 
temperature  that can be reached in a fin or rod of infinite length. 
stituting equation (49) into equation (48) resul ts  in equation (50) 

Physically speaking T m  is the maximum or  minimum 
Sub- 

d 2 T  (rEP hP  
dx2 - kA (T4 - Tm4) - kA - (T - Tm) = O - -  

Equation (50) is  the same as equation (2)  with Tm replacing Ts. Hence, 
the solution procedure is identical. 
can be used to determine the equivalent surrounding temperature,  Ts ,  
of a space that has  an equivalent radiation temperature,  Tsr ,  and 

The same procedure used above 
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equivalent convection temperature,  TsC, by substituting 

The same procedure can also be used when the heat generation term 
depends on temperature in some specified from, namely i f  it var ies  
linearly or to the fourth power of temperature.  
case when the heat generation is  linearly dependent on temperature will 
be considered. 

To i l lustrate this the 

Heat Generation That is Linearly Dependent on Temperature 

If the heat generation t e r m  is given by q"' = qolll t a T a tempera- 
tu re  T m  wi l l  be defined by: 

Substituting for q"' in equation (37) gives: 

d 2 T  uEP h P  - - -  (T4 - Tm4) - kA - a) (T - Tm) = 0 dx2 kA 

which i s  in  the same form as equation (2) .  

GENERAL SOLUTION O F  THE CONSTANT AREA F I N  
WITH TEMPERATURE DEPENDENT PROPERTIES 

AND HEAT GENERATION 

(53) 

In the following, the constant a r ea  fin will be considered in general 
assuming that the physical properties and the heat generation a r e  only 
functions of temperature. Under these conditions, equation ( 1 )  can be 
written as: 

d dx [k(T) g] - uE(T)P A (T4 - Ts4)  - hOP A (T - Ts)  + q"'(T) = 0 (54) 

I 18 
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L 

F r o m  the previous consideration of the constant properties problem, it 
is clear that it is desirable to choose the origin at the point where the 
temperature gradient is known instead of where the temperature is  
known. 
the variable 8 = T/To, equation (53) can be written as: 

Assuming the temperature to be To a t  x = 0 and introducing 

(55) 

Multiplying equation (55) by k(To, e) and integrating, the following 
equation is  obtained: 

e 

This gives 

The positive sign applies when 8 increses i n  the direction of increasing 
x, and the negative sign applies when 8 decreases  in the direction of 
increasing x. The solution to equation (57) can be written as: 

e (58) 
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The solution to the above equation i s  subject to these boundary conditions, 
(dT/dx)T = T, i s  constant or  function of To and T = TL a t  x = L. Assum- 
ing a value of To, (de/dx)e = 1 can be evaluated, and in order  to satisfy 
the second boundary condition, 

Once the value of To i s  determined that satisfies equation (59), equation 
(58) can be used to determine the temperature distribution. 
on the right hand side of both equations (59) and (58) can be very readily 
evaluated numerically or graphically for (de/dx)e = 1 > 0 with the other 
variables specified. For  (d8/dx)e = 
However, the singularity can be removed through integration by par ts  
giving: 

The integral  

= 0 a singularity exists a t  8 = 1 .  

GENERALIZATION O F  THE SOLUTION TO THE PROBLEM 

F r o m  the previous consideration of the special cases ,  the general 
method for handling this problem has become quite c lear .  It i s  generally 
advantageous, except for some cases  of iniinite length, to locate the zero 
x axis  a t  the point where the temperature gradient is  specified and not 
where the temperature is specified. 
to be To and substituting for 8 = T/To in equation (1) gives: 

Assuming the temperature at x = 0 

20 



Multiplying by A(x) k(To, 0)  gives: 

. 

c 

dS 
dx 

= P(x) A(x) - k(To, - es4)  

AZ(x) k(T0, e) q1l1(T0, e,x) - 
TO 

Equation (62) can be integrated once giving 

~ r A z ( x ) k Z ( T o , € 3 ) ( ~ z  2 1  - A'(x = O ) k z ( T o , l ) ( ~ ~  = 1 
e 

dB = rP(x) A ( x ) Z k ( T , ,  dS 9)LrT0' r E(T,, Ne' - €3:) t h(T,, e,x)(e - e,) 3 d9 - A' (x) k/To, €31 @'(T,, e.x) 
TO 

1 1 

If the right-hand side of equation (63) i s  only a function of 0 ,  the integral 
in the right-hand side of equation (63) can be evaluated exactly, although 
the evaluation may have to be done numerically or  graphically. A second 
integration would complete the solution. A value To is to be found to 
satisfy the boundary condition 0 = 8L at x = L. The details of this method 
were explained in dealing with the constant a rea  case with temperature 
dependent properties. 

If the right-hand side of equation (63) i s  both 0 and x dependent, the 
following scheme i s  used for the solution: A value of To i s  assumed that 
allows the calculation of 0 ~ .  
(d0/dx)0 = 1 can be evaluated. Using a suitable 0 increment and a suita- 
ble numerical integration scheme, equation (62)  can be solved numerically, 
resulting in the evaluation of d0/dx. Successively integrating the result  
numerically gives x a s  a function of 8. If a t  0 = B L ,  x = L, the assumed 
value of To i s  the correct  value, and the solution i s  completed. 
0 = 0 ~ ,  x # L, a new value of To i s  assumed until the solution i s  com- 
pleted. 
than the originally assumed value. 
value of To must be greater than the originally assumed value. 
sign for  d0/dx should be chosen depending on whether 0 increases  or 
decreases  in the increasing direction of x. 

F r o m  the boundary condition a t  x = 0,  

If a t  

When x < L  a t  8 = e ~ ,  the new assumed value of To must  be l e s s  
When x > L a t  0 = 0 ~ ,  the new assumed 

The proper 
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CONCLUSIONS 

The nonlinear differential equation that descr ibes  one-dimensional7 
steady- state heat exchange by both convection and radiation between a 
rod or a fin and the surroundings was examined in  general. It was 
shown that the constant a r e a  case,  which is  of practical  importance, 
can be solved exactly for either constant or temperature  dependent 
physical properties and heat generation. 

The conditions under which the problem in general could be solved 
exactly and the method of solution were considered, and a general 
method for solving the problem numerically was outlined. 

The results obtained can be used for solving many problems of 
practical  engineering importance a s  well a s  for design optimization. 
The solution also makes it possible to determine the physical properties 
of materials and examine the validity of some of the theories about 
radiant energy emission. 
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APPENDIX’ 

COMPUTER PROGRAM 

Two separate computer programs were written to evaluate the 
The programs a r e  written in  For t ran  IV for the functions P and A. 

IBM 7094 computer. 

The integrals a r e  evaluated numerically by the Runge-Kutta method 
of integration. An integration interval of . 001 i s  used until the independ- 
ent variable of integration becomes equal to or  greater than .98, then an 
integration step of .OOOl is used. 

The Computer Program for Evaluating the 
Function P and AL for the Minimum Mass Fin Geometry 

For  the case where g = 0 ,  the computer program evaluates equation 
(24). For all other cases the program evaluates equation (23). 

When 8, = 1 and g = 0 ,  equation (24) has a singularity at A = 1. For  
this case the upper limit of integration is  set equal to . 999.  

When the integration is completed, the program computes AL for 
each of the equations (44) and (46) which a r e  the minimum m a s s  expres- 
sions for rectangular and cylindrical geometry, respectively. This is  
accomplished by evaluating the right hand side of equations (45) and (47) 
for 0 5 A 5 AL,  using the same increment for A 3 ”  that was used in the 
integration process ,  and comparing the value of each function to the 
difference I(1, O s ,  r ,  C) - @ ( A ,  e,, r ,  C).  
compare wi th  this difference, AL = A has been found for this expression. 

When either of the values 

The difference P(1,  O s ,  r ,  C) - @(A,  O s ,  r ,  C)  is  plotted versus  A 3 / ‘ .  

Explanation of Parameters  and Cross-reference 
Between Symbols (Input and Output) 

Provided by James W. P r i ce  of the Applied Kesearch Branch. 



The Function A 

For the case where g = 0,  the program evaluates A by equation (25). 
For  all other cases  the program uses equation (20) .  

When g = 0 and 8, = 1, equation (25) has a singularity at 8 = 1 .  For 
this case the upper limit g integration is  set equal to .999. 

The value of A is  stored after each integration step and when the 
upper limit is  reached for the integration, the values of A (  1, e,, r , C) 
- A ( 0 ,  e,, r ,  C) a r e  plotted versus 0 .  

Explanation of Parameters  and Cross-reference 
Between Symbols (Input and Output) 

Algebraic  F o r t r a n  
Symbol Symbol 

A 

Description 

G 5kA/2rET$ (dO/dx): = 0 

R , R  5h/2uETd 

TS 
THETA Independent var iable  of integrat ion 

e r [ e 5  - 5e; e t r ( e 2  - 2 e S e ) t c ] 1 / 2  de 

2 [e5  - 58: 8 + r ( e 2  - 2 e S 0 ) t C 1  1 / 2  

LAMDA 

1 
o r  

2 C d 2  
5(e4 - e s 4 ) t 2 r ( e - e s )  50,' t 2 res  

0 
[ e 5  - 5 e , ' e + r ( e 2 - 2 e s e ) t C ] 1 / 2  ( 1 0 e 3 t r ) d e  

[ 5(04 - o s 4 )  t 2r(8  - 
0 

Data sheets a re  the same a s  previously shown. 
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ITEM 

Title 

IP 

IR 

G 

TS 

R1  

R2 

R3 

R4 

R5 

DESCRIPTION 

Any desired information 

Pr in t  interval 

Number of values of R 
maximum value is 18. 
Minimum value is 1 .  

First value in R a r r a y  

Second value in R a r r a y  

Third value in R a r r a y  

Fourth value in R a r r a y  

etc. 
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CQMPUTER LISTING FOR EVA~UATING A 

. 

C L A N D A ( 2 r T S v R v C )  
CBMMBN 

C 0HM0N 

DIMENSIdiV L J ( 6 )  
DIMENSlJN B C D X ( 1 2 ) , B C 0 1 ( 1 2 )  
DATA .t3CD1/72HZ 

DATA BCDX/72H(LAHDA( L) -LA#DA(Z ) ) * * 2 ’  

TSr TSt4,YPl r C, R , G .  

TT ( 5 10 ) 9 YY ( 6 9 510 1 .DPH ( 5  LO ) 
CBMHBN RR( 18) 

D I M E N S I B N  T I T L E ( 1 2 )  

1 / 

1 / 
R E A D ( 5 9 1 )  T I T L E  

897 K k A D ( 5 g 5 0 0 )  I P r I R  
I F ( I P )  975r975.900 

900 R t A D ( 5 r 8 0 0 )  G r T S t ( R R ( 1 ) r I  = I r I R )  
I R R  = 0 
K K  = 0 
T T ( 1 I  = U. 
IF(TS - 1.1 2 0 5 r 2 0 4 . 2 0 5  

204 TL = 0999 
G0 T 0  206  

205 T L  = 1. 
2 0 6  TSM = TS**4. 

D T T  = e 0 0 0 1  

K E Y  = 0 . 
NE4 = 1 

K J  = 0 
950 K K  = K K  + 1 

K L  = K K  - 1 

K E Y  = K E Y  + 1 
R = &R(IRK) 

i R K  = ihR + 1 

DT = e 0 0 1  
C =  L + S.*TS#-L.+R*(2.+TS - 1.1 

I F ( > )  2001201r200 
200 C d Y l  = 0. 

201 t b ’ J 1  = (L.*SQRT ( C ) ) I ( S . * T S H  + Z . * R * T S I  
;d Td 2 0 2  

2 0 2  T H E T 4  = 0. 
T I Y  = - 9 8  
XNUCd = 1. 
Y = 0. 
TF = -001 

J = l  
Y Y ( K K r J 1  = 0 e  
I P P  = 0 

10 CALL D I ~ F E ( T H E T A r Y r Y P r D T ( N E 4 )  
I F t T t i E T A  - T F )  10~105r105 

105 I F ( T H E T A  -*979 ~ 1 1 0 ~ 1 1 0 ~ 1 0 8  
108 O T  = D T T  

T H E T A  = TF 
X\UMB = 10. 

I P P  = IPP + 1 
I F ( i P P  - I P I  20925r25 

110 TF = THETA + XNUMB*DT 

25 I P P  = 0 
J = J + l  29 
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SIBFTC YFU 
S U R t ( d U T I . J E  Y F U d i (  T H t T A , Y , Y P t  I )  
C GMi. l% U T 5 T SM 1 Y P l  1 C t 2 1 G 

YPB = S o + ( T t i f T A * * 4 .  - T S M )  + 2.+d*(THETA - TS) 
Y P 2  = T t t t T A + ( - 5 o * T S M -  20+TS*R + JHETA*(R + T C U B ) )  -+ C 
IF(YP2) 1012012i) 

T i U B  = F H E T A * + 3 o  

10 X F ( T H E T A  - 1 0 )  20115t15 
1 5  Y P 2  = 00 
20 I F ( S )  2 1 9 2 5 1 2 1  
21 Y ?  = l o /  S Q R T  ( Y P 2 )  

YPl = 0. 
Si3 T a  30  

25 Y P 1  = SQAT ( Y P 2 1  / Y P @  

30 R t T U A U  
END 

YP = IYPl*(lOo*TCUB + K J ) / Y P d  

3 1  
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COMPUTER LISTING FOR EVALUATING iP AND XL FOR T H E  MINIMUM MASS FIN 
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280 DO 285 I = 1 p K K  
I F ( J  - LJ(I)I 281,283,285 

281 J = L J ( I )  
285 C ! d N T I N U r  

I P Y T  = J / 5 1  + 1 
Dlil 1200 JJ = 1 , I P N T  
I F ( J J  - I P U T ) 1 2 U 5 , 1 2 0 1 , 1 2 0 1  

1201 L P P  = J - (  / P N T - l )  + 5 1  

1205 L P P  = 5 1  
1210 M J  = KJ*6  + 1 

GEI TiJ 1210 

LL = ( J J  - 1) +51 + 1 
L P  = LL+ L P P  - 1 
WRI  TE ( 6,405 1 
W R I T E  ( 6,1450) 
DB 850 L = L L , L P  
W R I T E (  6941U) Z T ( L  1 ,  (PH(NN,L) ,  NN=1 ( K 1 0  

T I T L E  11 S,G , ( R K ( N J  1 ,  NJ=MJt I R R )  

850 C b N I I Y U i i  
1200 C U N T I Y U t  

l F ( T L  - 1,) 1 4 0 0 , L 5 0 0 , 1 4 0 0  
1400 F T  = 1. 

1500 H K I T E ( 6 , 4 1 9 )  TSIG 
W R I I E ( 6 , 4 1 0 )  FT 

D 0  418 I = 1 ,KK 
W R I T E ( b r 4 2 0 )  R R ( I ) , Z M I N l ( I ) ~ Z M I N 2 ( 1 )  

418 C a N T I N U E  
KK = 0 
K J  = KJ + 1 

I F t I R R  - I R ) 3 0 1 ~ 1 0 , 1 0  
975 S T 0 P  
1450 FBRMA T ( 2 O X  1H 2 1 
419 F B R M A T (  1H1, 

1 2X,99HZMINl AND ZMIN2 C l d R R t S P a N D  TIJ M I N  MASS F U N C T I l d N S  Fk3R 
l R E G T  4 N U  C Y L Z N D R I C A L  G E B M E T K I E S  , R E S P E C T I V E L Y / /  1 5 X r 4 t i T S  =,F10.3, 
1 1 4 X  3dC; =, F 10- 3 / /  9 X 9 1 H K  11 X t SH ZM I N I 9 X  SHZM I IJZ/ / 

420 F G R M A T ( Z X , 3 F l 4 . 6 )  
410 FiERMAT 13x9 FLO, 4,6F 14.6 1 
405 F ~ R M R T ( l H L , 5 3 X , 1 2 A 6 / / 1 8 X , 4 H . r S  =rF14 .4 ,2X ,3HG = , f 1 4 m 4 / / 1 9 X , 3 H  K ,  

1 1 x 1  (6F14.4) 1 
1 F B R M A T ( 6 E 1 2 * 0 )  
2 F B R M A T ( 4 1 3 )  

400 F a R N A T ( 1 2 A 5 )  
t E ND 

. 
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